Polynomial integrable systems
Plática dada por Alexander Turbiner (ICN, UNAM) dentro del coloquio de Matématicas del Instituto de Matemáticas de la UNAM, el lunes 4 de octubre de 2016 en el Instituto de Matemáticas de la UNAM
Video de la plática
https://youtu.be/21knvj0VEy4
Resumen de la Plática
Introduction to theory of finite-dimensional integrable systems is briefly given. Notion of polynomial integrable system is introduced.
It is stated that
(i) any Calogero-Moser system is canonically-equivalent to a polynomial integrable system, its Hamiltonian and integrals are polynomials in momenta p and coordinates q.
(ii) for any Calogero-Moser model there exists a change of variables in which the potential in a rational function.
(iii) any Calogero-Moser model is equivalent to Euler-Arnold top in a constant magnetic field (gyroscope) with non-compact algebra gl(n,R) (for a classical Weyl group) with constant Casimir operators as a constraint.
(iv) A solution of celebrated 3-body elliptic Calogero model is presented in detail as an example.
Cartel de la plática
https://goo.gl/photos/hVmvFzeHBTpM3pqv8
Foto de miniatura del video
https://goo.gl/photos/Z27J6Nz9oTcUf4dX9
Página de Alexander Turbiner en Researchgate.
https://www.researchgate.net/profile/Alexander_Turbiner
Página del Coloquio de Matématicas
http://www.matem.unam.mx/actividades/coloquio/cu
Página de facebook del Ciencias TV
https://www.facebook.com/Ciencias-TV-…
Videos Académicos publicados por Ciencias TV
https://www.youtube.com/playlist?list…
Videos Académicos publicados por Ciencias TV
https://goo.gl/photos/EXEAiLUiLjKrHTeX9