Polynomial integrable systems

Plática dada por Alexander Turbiner (ICN, UNAM) dentro del coloquio de Matématicas del Instituto de de la UNAM, el lunes 4 de octubre de 2016 en el Instituto de Matemáticas de la UNAM

Video de la plática

Resumen de la Plática
Introduction to theory of finite-dimensional integrable systems is briefly given. Notion of polynomial integrable system is introduced.

It is stated that

(i) any Calogero-Moser system is canonically-equivalent to a polynomial integrable system, its Hamiltonian and integrals are polynomials in momenta p and coordinates q.

(ii) for any Calogero-Moser model there exists a change of variables in which the potential in a rational function.

(iii) any Calogero-Moser model is equivalent to Euler-Arnold top in a constant magnetic field (gyroscope) with non-compact gl(n,R) (for a classical Weyl ) with constant Casimir operators as a constraint.

(iv) A solution of celebrated 3-body elliptic Calogero model is presented in detail as an example.

Cartel de la plática

Foto de miniatura del video

Página de Alexander Turbiner en Researchgate.

Página del Coloquio de Matématicas

Página de del Ciencias TV

Videos Académicos publicados por Ciencias TV

Videos Académicos publicados por Ciencias TV